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Abstract. A generalization of the two-by-two rotation
technique is proposed, permitting a whole row (column)
of the matrix to be treated simultaneously. The method
is based on the explicit analytical evaluation of the
matrix exponent representing a symmetric combination
of the individual rotations. Besides constructing the
unitary transformation matrices, a new orthogonaliza-
tion algorithm is also proposed. The resulting “‘unitary
perturbation theory” and orthogonalization method
may be useful in different areas.
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1 Introduction

The method of two-by-two rotations is used in different
areas of quantum chemistry in order to calculate
iteratively functions satisfying some desired require-
ments: the classical Jacobi matrix diagonalization
algorithm is a well-known prototype. When doing two-
by-two rotations, the orthogonality of the functions
considered is conserved in every step, so their sequence
produces a unitary global transformation matrix. This
scheme is, however, hardly applicable in analytical
studies because of the inherent asymmetry by which
one treats the different functions.

In many cases one has an acceptable zero-order es-
timate of the vector required and seeks improved ap-
proximations for it — this is the essential starting point
for perturbational approaches. Standard perturbation
methods suffer from the drawback that the orthogo-
nality of the different functions is lost after the pertur-
bative correction of the solution considered is
introduced. (Orthogonality is restored only in infinite
order and if the perturbative corrections for all the
vectors are computed.)

The purpose of the present letter is to present a simple
formalism which combines, as far as possible,
the advantages of these schemes. It is based on the
explicit analytical evaluation of the matrix exponent

representing the symmetric combination of the individ-
ual rotations.

2 Theory

Let us consider the “reference’ state denoted ““0”” and an
“excited” one denoted ““i”’, and let the respective state
vectors (wave functions) be y; and . The two-by-two
rotation leading to functions

% = YOS @; + Y, sin ;
‘M = —Yysing; +y;cos ¢;
is described by the rotation matrix

U = (cpsq)l- —smq)i> . 2)
sin ¢,

COS @;
It is easy to see that the unitary matrix, U;, can be
presented as a matrix exponent of the antisymmetric
(anti-Hermitian) matrix, A;:

A= (3{ ‘6”1‘) . (3)

If there are more than two states, the matrices U; and
A; describing a given two-by-two rotation should be
defined in a space of larger dimensions: they can be
written down by trivial padding with zero and unit
submatrices in the respective subspaces. We will actually
need the padded form of A; only:

(1)

U,’ = exp(A,-);

0 0 ... —p, ... 0
0 0 ... 0 ... 0

Ai = o, 0 ... 0 ... 0" )
0 0 ... 0 ... 0

If there are several “excited’ states to be considered, the
sequential two-by-two rotations will involve their non-
symmetric treatment, which is hardly adequate if an
analytical investigation is desired. However, one may
treat them on an equal footing if, instead of performing
the (noncommutative) multiplication of matrices U;, one
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performs the summation of their “logarithms™ A; and
seeks the overall unitary transformation in the form

U =exp(A) , (5)
with
0 - — —ON
(o 0 o ... 0
A=1| ¢, 0 0 0 . (6)
oy O o ... 0

Matrix U defined in this manner describes the simulta-
neous effect of the individual rotations in a completely
symmetric manner. In order for Egs. (5) and (6) to be
actually useful, one has to sum over the series expansion
of the matrix exponent

easy to see, it projects on the two-dimensional subspace
of the orthonormalized vectors

1 0
0 X1
C = 0 ;0 G = X2 (13)
0 XN
Now, it is easy to check by induction that
A2n = (—1)" 2nB
(=" (14)

A2n+1 _ (_1)n(P2n+lA/ )

Using this recurrence formula, one can trivially sum up
the matrix exponent exp(A) as

1 +x3(cosp — 1)

—X, sin @
xpx1(cosp — 1)

—x; Sin @
xix1(cosp — 1)
xxa(cosp — 1)
(15)
xax;i(cosp — 1) 1 +x2(cosp — 1)

xpxy(cosp — 1) xixy(cosp — 1)

cos @ —Xx1 sin @

xising 1 +xi(cosp—1)

xysing  xpxa(cosg — 1)

U=

xising  xpx;(cosp — 1)

xysing  xpxy(cosp —1)
exp(A):ZJA =1+A+5AT+oA (7)

n=0"""

We define the quantities

0= (Z @?) (8)

and
bi
xi=— 9)
e
and the auxiliary matrices expressed in terms of x;-s:
0 —x3 —x» ... —xy
X1 0 0 . 0
A= x 0 o ... 0 (10)
xy 0 o ... 0
and
1 0 o ... 0
0 x% X2)2€1 XNX]
B— 0 xx x; XNX2 (11)
0  xix3  xox3 XNX3
0 xixy xoxy ... x%,
Note that by definition
et (12)

i
Using this result, one can check that B> =B, so the
Hermitian matrix B = B' is a projection matrix. As it is

This means that the reference vector ¢; defined in
Eq. (13) transforms to a linear combination

(16)
where the angle ¢ is given by Eq. (8). However, Eq. (15)
also gives the unitary transformation for any value of ¢,
not only for that defined in Eq. (8); one may therefore
consider ¢ in Eq. (16) as an optimization parameter and
determine the best (e.g. variational) linear combination
of vectors ¢; and c¢,. (Parameters x; should not be
recalculated.)

This scheme can also be utilized as an orthogonal-
ization algorithm (replacing, for example, Schmidt
orthogonalization) when the task is to generate a full set
of orthonormalized vectors orthogonal to some vector

q0

q1
q=\| 92

, .
€] = COS @C; + SIn @¢;

(17)
qn
Assuming that vector q is normalized (Zf\;0|qi|2 =1),

one can present it in the form of the first column of
Eq. (15) by introducing the notations cos¢ = g,

sing = (X, |¢i*)% x; = qi/sing (i =1,2,...,N). Then

the other columns of Eq. (15) give the orthonormalized
vectors requested.

3 Illustrations

We think the scheme proposed may appear useful in
both analytical and numerical investigations. To illus-
trate its viability, we performed some very simple
calculations. Table 1 contains some results for the



Table 1. Some results calculated for the helium full configuration
interaction (CI) problem using a 10/5s2pld basis and Meller—
Plesset (M P) perturbation theory (PT) and Epstein—Nesbet (EN)
partitioning
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Table 2. Some characteristics calculated for the 10 x 10 matrix
shown in the text

Method Energy value
Self-consistent-field energy -2.861673
Second-order PT — MP2 -2.889217
Fourth-order PT — MP4 —2.895485
Second-order PT — EN2 —2.894155
Expectation value for the first-order —2.895355
EN perturbational wave function
Expectation value — present scheme —2.895360
Expectation value — present scheme —2.895402
with optimized ¢
Full CI -2.895719
Method Overlap with the

exact eigenvector

Hartree—Fock wave function 0.995975
First-order EN perturbational wave function  0.999926
Present scheme 0.999927
Present scheme with optimized ¢ 0.999939

correlational problem of the He atom in the small
10/5s2pld basis defined in Ref. [1] — including the full
configuration interaction (CI) solution, as a reference. It
can be seen that the results of the present scheme, as it is
applied to the CI matrix, are significantly better than
those given by second-order Mller—Plesset (MP) pertur-
bation theory (PT), but are only slightly better than
those obtained by second-order PT using Epstein—
Nesbet (EN) partitioning. (This is not the case in the
H, example discussed later.)

In the case of problems for which the conditions of
the applicability of the traditional PT are also fulfilled,
the approximation provided by the present scheme can
be expected to be about as good as those of ordinary
second-order PT. If, however, there are some large
off-diagonal matrix elements making the usual PT
inapplicable, the present algorithm still works accept-
ably, which is again not surprising as it utilizes
the exact solutions of the individual two-by-two ro-
tations, i.e., the individual rotational angles, ¢;, are
determined by solving exactly the respective two-by-
two eigenvalue problems. We shall illustrate this
by two examples.

Some characteristic data collected for the following
10 x 10 matrix are displayed in Table 2.

Method Energy value

Second order EN-type PT —-1.19605

Expectation value for the first-order —-0.60640
EN perturbational wave function

Expectation value — present scheme —-0.67284

Expectation value — present scheme —-0.75704
with optimized ¢

Exact eigenvalue —-0.77504

Method Overlap with the

exact eigenvector

First-order EN perturbational wave function  0.96950
Present scheme 0.98416
Present scheme with optimized ¢ 0.99659
E/a.u
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Fig. 1. Potential curves calculated for the H, molecule with the
6-31G** basis set

The results show that the present scheme gives quite
good results, especially if the optimization of angle ¢ is
also performed.

Finally, the potential curves calculated for the H,
molecule calculated in the 6-31G** basis set are dis-
played in Fig. 1; the present scheme is again applied to
the correlation problem and the results are compared
with those of the exact calculation (the full CI results)
and different perturbational schemes. Inspection of the
curves shows that both MP and EN PTs fail when the
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bond length increases, but our approximate scheme be-  Reference

haves quite acceptably. )
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